35,567 research outputs found

    On hadronic beam models for quasars and microquasars

    Full text link
    Most of the hadronic jet models for quasars (QSOs) and microquasars (MQs) found in literature represent beams of particles (e.g. protons). These particles interact with the matter in the stellar wind of the companion star in the system or with crossing clouds, generating gamma-rays via proton-proton processes. Our aim is to derive the particle distribution in the jet as seen by the observer, so that proper computation of the γ\gamma-ray and neutrino yields can be done. We use relativistic invariants to obtain the transformed expressions in the case of a power-law and power-law with a cutoff particle distribution in the beam. We compare with previous expressions used earlier in the literature. We show that formerly used expressions for the particle distributions in the beam as seen by the observer are in error, differences being strongly dependent on the viewing angle. For example, for Γ=10\Gamma =10 (Γ\Gamma is the Lorentz factor of the blob) and angles larger than ∼20o\sim 20^o, the earlier-used calculation entails an over-prediction (order of magnitude or more) of the proton spectra for E>Γmc2E>\Gamma mc^2, whereas it always over-predicts (two orders of magnitude) the proton spectrum at lower energies, disregarding the viewing angle. All the results for photon and neutrino fluxes in hadronic models in beams that have made use of the earlier calculation are affected. Given that correct gamma-ray fluxes will be in almost any case significantly diminished in comparison with published results, and that the time of observations in Cherenkov facilities grows with the square of the flux-reduction factor in a statistically limited result, the possibility of observing hadronic beams is undermined.Comment: Accepted for publication in A&A Letter

    Resonance damping and optical susceptibilities

    Get PDF

    Pulsating White Dwarfs

    Get PDF
    The Sloan Digital Sky Survey has allowed us to increase the number of known white dwarfs by a factor of five and consequently the number of known pulsating white dwarfs also by a factor of five. It has also led to the discovery of new types of variable white dwarfs, as the variable hot DQs, and the pulsating Extremely Low Mass white dwarfs. With the Kepler Mission, it has been possible to discover new phenomena, the outbursts present in a few pulsating white dwarfs.Comment: 10 pages, 2 figures, Wide-field variability surveys: a 21st-century perspective, 22nd Los Alamos Stellar Pulsation Conference Series meeting, San Pedro de Atacama, Chile, Nov. 28 - Dec. 2, 201

    Optical binding in nanoparticle assembly: Potential energy landscapes

    Get PDF
    Optical binding is an optomechanical effect exhibited by systems of micro- and nanoparticles, suitably irradiated with off-resonance laser light. Physically distinct from standing-wave and other forms of holographic optical traps, the phenomenon arises as a result of an interparticle coupling with individual radiation modes, leading to optically induced modifications to Casmir-Polder interactions. To better understand how this mechanism leads to the observed assemblies and formation of patterns in nanoparticles, we develop a theory in terms of optically induced energy landscapes exhibiting the three-dimensional form of the potential energy field. It is shown in detail that the positioning and magnitude of local energy maxima and minima depend on the configuration of each particle pair, with regards to the polarization and wave vector of the laser light. The analysis reveals how the positioning of local minima determines the energetically most favorable locations for the addition of a third particle to each equilibrium pair. It is also demonstrated how the result of such an addition subtly modifies the energy landscape that will, in turn, determine the optimum location for further particle additions. As such, this development represents a rigorous and general formulation of the theory, paving the way toward full comprehension of nanoparticle assembly based on optical binding

    Multiple light scattering and optomechanical forces

    Get PDF
    When off-resonant light travels through a transparent medium, light scattering is the primary optical process to occur. Multiple-particle events are relatively rare in optically dilute systems: scattering generally takes place at individual atomic or molecular centers. Several well-known phenomena result from such single-center interactions, including Rayleigh and Raman scattering, and the optomechanical forces responsible for optical tweezers. Other, less familiar effects may arise in circumstances where throughput radiation is able to simultaneously engage with two or more scattering sites in close, nanoscale, proximity. Exhibiting the distinctive near-field electromagnetic character, inter-particle interactions such as optical binding and a variety of inelastic bimolecular processes can then occur. Although the theory for each two-center process is well established, the connectivity of their mechanisms has not received sufficient attention. To address this deficiency, and to consider the issues that ensue, it is expedient to represent the various forms of multi-particle light scattering in terms of transitions between different radiation states. The corresponding quantum amplitudes, registering the evolution of photon trajectories through the material system, can be calculated using the tools of quantum electrodynamics. Each of the potential outcomes for multi-particle scattering generates a set of amplitudes corresponding to different orderings of the constituent photon-matter interactions. Performing the necessary sums over quantum pathways between radiation states is expedited by a state-sequence development, this formalism also enabling the identification of intermediate states held in common by different paths. The results reveal the origin and consequences of linear momentum conservation, and they also offer new insights into the behavior of light between closely neighboring scattering events. © 2010 Society of Photo-Optical Instrumentation Engineers

    The age-metallicity dependence for white dwarfs

    Get PDF
    We present a theoretical study on the metallicity dependence of the initial−-to−-final mass relation and its influence on white dwarf age determinations. We compute a grid of evolutionary sequences from the main sequence to ∼3 000\sim 3\, 000 K on the white dwarf cooling curve, passing through all intermediate stages. During the thermally-pulsing asymptotic giant branch no third dredge-up episodes are considered and thus the photospheric C/O ratio is below unity for sequences with metallicities larger than Z=0.0001Z=0.0001. We consider initial metallicities from Z=0.0001Z=0.0001 to Z=0.04Z=0.04, accounting for stellar populations in the galactic disk and halo, with initial masses below ∼3M⊙\sim 3M_{\odot}. We found a clear dependence of the shape of the initial−-to−-final mass relation with the progenitor metallicity, where metal rich progenitors result in less massive white dwarf remnants, due to an enhancement of the mass loss rates associated to high metallicity values. By comparing our theoretical computations with semi empirical data from globular and old open clusters, we found that the observed intrinsic mass spread can be accounted for by a set of initial−-to−-final mass relations characterized by different metallicity values. Also, we confirm that the lifetime spent before the white dwarf stage increases with metallicity. Finally, we estimate the mean mass at the top of the white dwarf cooling curve for three globular clusters NGC 6397, M4 and 47 Tuc, around 0.53M⊙0.53 M_{\odot}, characteristic of old stellar populations. However, we found different values for the progenitor mass, lower for the metal poor cluster, NGC 6397, and larger for the younger and metal rich cluster 47 Tuc, as expected from the metallicity dependence of the initial−-to−-final mass relation.Comment: Accepted for publication in MNRA

    Implementing the three-particle quantization condition including higher partial waves

    Full text link
    We present an implementation of the relativistic three-particle quantization condition including both ss- and dd-wave two-particle channels. For this, we develop a systematic expansion about threshold of the three-particle divergence-free K matrix, Kdf,3\mathcal{K}_{\mathrm{df,3}}, which is a generalization of the effective range expansion of the two-particle K matrix, K2\mathcal{K}_2. Relativistic invariance plays an important role in this expansion. We find that dd-wave two-particle channels enter first at quadratic order. We explain how to implement the resulting multichannel quantization condition, and present several examples of its application. We derive the leading dependence of the threshold three-particle state on the two-particle dd-wave scattering amplitude, and use this to test our implementation. We show how strong two-particle dd-wave interactions can lead to significant effects on the finite-volume three-particle spectrum, including the possibility of a generalized three-particle Efimov-like bound state. We also explore the application to the 3Ï€+3\pi^+ system, which is accessible to lattice QCD simulations, where we study the sensitivity of the spectrum to the components of Kdf,3\mathcal{K}_{\mathrm{df,3}}. Finally, we investigate the circumstances under which the quantization condition has unphysical solutions.Comment: 57 pages, 12 figures, 3 tables (v2: Made minor clarifications, updated a reference, fixed typos

    Modeling the thermal evolution of enzyme-created bubbles in DNA

    Full text link
    The formation of bubbles in nucleic acids (NAs) are fundamental in many biological processes such as DNA replication, recombination, telomeres formation, nucleotide excision repair, as well as RNA transcription and splicing. These precesses are carried out by assembled complexes with enzymes that separate selected regions of NAs. Within the frame of a nonlinear dynamics approach we model the structure of the DNA duplex by a nonlinear network of coupled oscillators. We show that in fact from certain local structural distortions there originate oscillating localized patterns, that is radial and torsional breathers, which are associated with localized H-bond deformations, being reminiscent of the replication bubble. We further study the temperature dependence of these oscillating bubbles. To this aim the underlying nonlinear oscillator network of the DNA duplex is brought in contact with a heat bath using the NoseËŠ\rm{\acute{e}}-Hoover-method. Special attention is paid to the stability of the oscillating bubbles under the imposed thermal perturbations. It is demonstrated that the radial and torsional breathers, sustain the impact of thermal perturbations even at temperatures as high as room temperature. Generally, for nonzero temperature the H-bond breathers move coherently along the double chain whereas at T=0 standing radial and torsional breathers result.Comment: 19 pages, 7 figure

    A Study of Cool White Dwarfs in the Sloan Digital Sky Survey Data Release 12

    Full text link
    In this work we study white dwarfs where 30 000 K>Teff>5 000 K30\,000\,\text{K} {>} \mathrm{T}_{\rm{eff}} {>} 5\,000\,\text{K} to compare the differences in the cooling of DAs and non-DAs and their formation channels. Our final sample is composed by nearly 13 00013\,000 DAs and more than 3 0003\,000 non-DAs that are simultaneously in the SDSS DR12 spectroscopic database and in the \textit{Gaia} survey DR2. We present the mass distribution for DAs, DBs and DCs, where it is found that the DCs are ∼0.15 M⊙{\sim}0.15\,\mathrm{M}_\odot more massive than DAs and DBs on average. Also we present the photometric effective temperature distribution for each spectral type and the distance distribution for DAs and non-DAs. In addition, we study the ratio of non-DAs to DAs as a function of effective temperature. We find that this ratio is around ∼0.075{\sim}0.075 for effective temperature above ∼22 000 K{\sim}22\,000\,\text{K} and increases by a factor of five for effective temperature cooler than 15 000 K15\,000\,\text{K}. If we assume that the increase of non-DA stars between ∼22 000 K{\sim}22\,000\,\text{K} to ∼15 000 K{\sim}15\,000\,\text{K} is due to convective dilution, 14±314{\pm}3 per cent of the DAs should turn into non-DAs to explain the observed ratio. Our determination of the mass distribution of DCs also agrees with the theory that convective dilution and mixing are more likely to occur in massive white dwarfs, which supports evolutionary models and observations suggesting that higher mass white dwarfs have thinner hydrogen layers.Comment: 9 pages, 10 figures, accepted by MNRA
    • …
    corecore